Perturbations of orthogonal polynomials with periodic recursion coefficients
نویسندگان
چکیده
We extend the results of Denisov–Rakhmanov, Szegő–Shohat– Nevai, and Killip–Simon from asymptotically constant orthogonal polynomials on the real line (OPRL) and unit circle (OPUC) to asymptotically periodic OPRL and OPUC. The key tool is a characterization of the isospectral torus that is well adapted to the study of perturbations.
منابع مشابه
Fine Structure of the Zeros of Orthogonal Polynomials, Iii. Periodic Recursion Coefficients
We discuss asymptotics of the zeros of orthogonal polynomials on the real line and on the unit circle when the recursion coefficients are periodic. The zeros on or near the absolutely continuous spectrum have a clock structure with spacings inverse to the density of zeros. Zeros away from the a.c. spectrum have limit points mod p and only finitely many of them.
متن کاملOrthogonal Polynomials with Exponentially Decaying Recursion Coefficients
We review recent results on necessary and sufficient conditions for measures on R and ∂D to yield exponential decay of the recursion coefficients of the corresponding orthogonal polynomials. We include results on the relation of detailed asymptotics of the recursion coefficients to detailed analyticity of the measures. We present an analog of Carmona’s formula for OPRL. A major role is played b...
متن کاملAn Inverse Problem Associated with Polynomials Orthogonal on the Unit Circle
Polynomials orthogonal on the unit circle with random recurrence coefficients and finite band spectrum are investigated. It is shown that the coefficients are in fact quasiperiodic. The measures associated with these quasi-periodic coefficients are exhibited and necessary and sufficient conditions relating quasi-periodicity and spectral measures of this type are given. Analogs for polynomials o...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملComparative Asymptotics for Perturbed Orthogonal Polynomials
Let {Φn}n∈N0 and {Φ̃n}n∈N0 be such systems of orthonormal polynomials on the unit circle that the recurrence coefficients of the perturbed polynomials Φ̃n behave asymptotically like those of Φn. We give, under weak assumptions on the system {Φn}n∈N0 and the perturbations, comparative asymptotics as for Φ̃n(z)/Φ ∗ n(z) etc., Φ ∗ n(z) := z Φ̄n( 1 z ), on the open unit disk and on the circumference ma...
متن کامل